Accelerating Bayesian Structural Inference for Non-Decomposable Gaussian Graphical Models

نویسندگان

  • Baback Moghaddam
  • Benjamin M. Marlin
  • Mohammad Emtiyaz Khan
  • Kevin P. Murphy
چکیده

We make several contributions in accelerating approximate Bayesian structural inference for non-decomposable GGMs. Our first contribution is to show how to efficiently compute a BIC or Laplace approximation to the marginal likelihood of non-decomposable graphs using convex methods for precision matrix estimation. This optimization technique can be used as a fast scoring function inside standard Stochastic Local Search (SLS) for generating posterior samples. Our second contribution is a novel framework for efficiently generating large sets of high-quality graph topologies without performing local search. This graph proposal method, which we call “Neighborhood Fusion” (NF), samples candidate Markov blankets at each node using sparse regression techniques. Our third contribution is a hybrid method combining the complementary strengths of NF and SLS. Experimental results in structural recovery and prediction tasks demonstrate that NF and hybrid NF/SLS out-perform state-of-the-art local search methods, on both synthetic and real-world datasets, when realistic computational limits are imposed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian inference for Gaussian graphical models beyond decomposable graphs

Bayesian inference for graphical models has received much attention in the literature in recent years. It is well known that when the graph G is decomposable, Bayesian inference is significantly more tractable than in the general non-decomposable setting. Penalized likelihood inference on the other hand has made tremendous gains in the past few years in terms of scalability and tractability. Ba...

متن کامل

Learning Gaussian Graphical Models With Fractional Marginal Pseudo-likelihood

We propose a Bayesian approximate inference method for learning the dependence structure of a Gaussian graphical model. Using pseudo-likelihood, we derive an analytical expression to approximate the marginal likelihood for an arbitrary graph structure without invoking any assumptions about decomposability. The majority of the existing methods for learning Gaussian graphical models are either re...

متن کامل

Efficient Bayesian Inference for Multivariate Probit Models with Sparse Inverse Correlation Matrices

We propose a Bayesian approach for inference in the multivariate probit model, taking into account the association structure between binary observations. We model the association through the correlation matrix of the latent Gaussian variables. Conditional independence is imposed by setting some off-diagonal elements of the inverse correlation matrix to zero and this sparsity structure is modele...

متن کامل

Bayesian Inference for General Gaussian Graphical Models With Application to Multivariate Lattice Data.

We introduce efficient Markov chain Monte Carlo methods for inference and model determination in multivariate and matrix-variate Gaussian graphical models. Our framework is based on the G-Wishart prior for the precision matrix associated with graphs that can be decomposable or non-decomposable. We extend our sampling algorithms to a novel class of conditionally autoregressive models for sparse ...

متن کامل

Bayesian inference in probabilistic graphical models

This thesis consists of four papers studying structure learning and Bayesian inference in probabilistic graphical models for both undirected and directed acyclic graphs (DAGs). Paper A presents a novel algorithm, called the Christmas tree algorithm (CTA), that incrementally construct junction trees for decomposable graphs by adding one node at a time to the underlying graph. We prove that CTA w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009